Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.069
1.
FASEB J ; 38(10): e23659, 2024 May 31.
Article En | MEDLINE | ID: mdl-38733301

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Alzheimer Disease , Amyloid beta-Protein Precursor , Disease Models, Animal , Histone Deacetylases , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Mice , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice, Transgenic , Brain/metabolism , Brain/pathology , Amyloid beta-Peptides/metabolism , Cell Line, Tumor , Male , Mice, Inbred C57BL , Microglia/metabolism , Phenylenediamines/pharmacology , Acrylamides
2.
CNS Neurosci Ther ; 30(5): e14745, 2024 05.
Article En | MEDLINE | ID: mdl-38715326

BACKGROUND: Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS: In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS: We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS: HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS: Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.


Epigenesis, Genetic , Histone Deacetylase Inhibitors , Histone Deacetylases , Neuralgia , Neuralgia/drug therapy , Neuralgia/metabolism , Humans , Animals , Epigenesis, Genetic/drug effects , Histone Deacetylases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use
3.
Arthritis Res Ther ; 26(1): 96, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711064

BACKGROUND: Gout is caused by monosodium urate (MSU) crystals deposition to trigger immune response. A recent study suggested that inhibition of Class I Histone deacetylases (HDACs) can significantly reduce MSU crystals-induced inflammation. However, which one of HDACs members in response to MSU crystals was still unknown. Here, we investigated the roles of HDAC3 in MSU crystals-induced gouty inflammation. METHODS: Macrophage specific HDAC3 knockout (KO) mice were used to investigate inflammatory profiles of gout in mouse models in vivo, including ankle arthritis, foot pad arthritis and subcutaneous air pouch model. In the in vitro experiments, bone marrow-derived macrophages (BMDMs) from mice were treated with MSU crystals to assess cytokines, potential target gene and protein. RESULTS: Deficiency of HDAC3 in macrophage not only reduced MSU-induced foot pad and ankle joint swelling but also decreased neutrophils trafficking and IL-1ß release in air pouch models. In addition, the levels of inflammatory genes related to TLR2/4/NF-κB/IL-6/STAT3 signaling pathway were significantly decreased in BMDMs from HDAC3 KO mice after MSU treatment. Moreover, RGFP966, selective inhibitor of HDAC3, inhibited IL-6 and TNF-α production in BMDMs treated with MSU crystals. Besides, HDAC3 deficiency shifted gene expression from pro-inflammatory macrophage (M1) to anti-inflammatory macrophage (M2) in BMDMs after MSU challenge. CONCLUSIONS: Deficiency of HDAC3 in macrophage alleviates MSU crystals-induced gouty inflammation through inhibition of TLR2/4 driven IL-6/STAT3 signaling pathway, suggesting that HDAC3 could contribute to a potential therapeutic target of gout.


Acrylamides , Gout , Histone Deacetylases , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Phenylenediamines , Uric Acid , Animals , Uric Acid/toxicity , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Macrophages/metabolism , Macrophages/drug effects , Gout/metabolism , Gout/pathology , Mice , Inflammation/metabolism , Inflammation/chemically induced , Male , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Disease Models, Animal , Signal Transduction/drug effects
4.
Biol Direct ; 19(1): 37, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734627

BACKGROUND: Clear cell renal cell carcinoma (RCC) is the most common kidney tumor. The analysis from medical database showed that Scm-like with four MBT domains protein 2 (SFMBT2) was decreased in advanced clear cell RCC cases, and its downregulation was associated with the poor prognosis. This study aims to investigate the role of SFMBT2 in clear cell RCC. METHODS: The expression of SFMBT2 in clear cell RCC specimens were determined by immunohistochemistry staining and western blot. The overexpression and knockdown of SFMBT2 was realized by infection of lentivirus loaded with SFMBT2 coding sequence or silencing fragment in 786-O and 769-P cells, and its effects on proliferation and metastasis were assessed by MTT, colony formation, flow cytometry, wound healing, transwell assay, xenograft and metastasis experiments in nude mice. The interaction of SFMBT2 with histone deacetylase 3 (HDAC3) and seven in absentia homolog 1 (SIAH1) was confirmed by co-immunoprecipitation. RESULTS: In our study, SFMBT2 exhibited lower expression in clear cell RCC specimens with advanced stages than those with early stages. Overexpression of SFMBT2 inhibited the growth and metastasis of clear cell RCC cells, 786-O and 769-P, in vitro and in vivo, and its silencing displayed opposites effects. HDAC3 led to deacetylation of SFMBT2, and the HDAC3 inhibitor-induced acetylation prevented SFMBT2 from SIAH1-mediated ubiquitination modification and proteasome degradation. K687 in SFMBT2 protein molecule may be the key site for acetylation and ubiquitination. CONCLUSIONS: SFMBT2 exerted an anti-tumor role in clear cell RCC cells, and HDAC3-mediated deacetylation promoted SIAH1-controlled ubiquitination of SFMBT2. SFMBT2 may be considered as a novel clinical diagnostic marker and/or therapeutic target of clear cell RCC, and crosstalk between its post-translational modifications may provide novel insights for agent development.


Carcinoma, Renal Cell , Kidney Neoplasms , Mice, Nude , Ubiquitination , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Humans , Acetylation , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Animals , Mice , Cell Line, Tumor , Cell Proliferation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Gene Expression Regulation, Neoplastic
5.
J Transl Med ; 22(1): 418, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702756

The onerous health and economic burden associated with head and neck squamous cell carcinoma (HNSCC) is a global predicament. Despite the advent of novel surgical techniques and therapeutic protocols, there is an incessant need for efficacious diagnostic and therapeutic targets to monitor the invasion, metastasis and recurrence of HNSCC due to its substantial morbidity and mortality. The differential expression patterns of histone deacetylases (HDACs), a group of enzymes responsible for modifying histones and regulating gene expression, have been demonstrated in neoplastic tissues. However, there is limited knowledge regarding the role of HDACs in HNSCC. Consequently, this review aims to summarize the existing research findings and explore the potential association between HDACs and HNSCC, offering fresh perspectives on therapeutic approaches targeting HDACs that could potentially enhance the efficacy of HNSCC treatment. Additionally, the Cancer Genome Atlas (TCGA) dataset, CPTAC, HPA, OmicShare, GeneMANIA and STRING databases are utilized to provide supplementary evidence on the differential expression of HDACs, their prognostic significance and predicting functions in HNSCC patients.


Head and Neck Neoplasms , Histone Deacetylase Inhibitors , Histone Deacetylases , Squamous Cell Carcinoma of Head and Neck , Humans , Histone Deacetylases/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/enzymology , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/enzymology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Molecular Targeted Therapy , Gene Expression Regulation, Neoplastic
7.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734756

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Chaetomium , Histone Deacetylases , Multigene Family , Polyketides , Secondary Metabolism , Chaetomium/genetics , Chaetomium/enzymology , Chaetomium/metabolism , Secondary Metabolism/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Polyketides/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Biosynthetic Pathways/genetics , Epigenesis, Genetic
8.
J Physiol Pharmacol ; 75(2): 117-122, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736259

The process of acetylation and deacetylation of histones within the nucleus operates within a dynamic equilibrium. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) collaboratively and precisely regulate normal gene transcription and expression. Any disorder in the activity of HATs/HDACs can lead to uncontrolled gene expression, consequently resulting in tumorigenesis. Histone deacetylase inhibitors (HDACIs) have the capacity to block the cell cycle, thereby restraining tumor cell proliferation and tumor growth. Also, HDACIs exhibit a significant capability to diminish the expression of apoptosis protein inhibitors such as Bcl-2 and B-cell lymphoma-extra-large (Bcl-xL), while concurrently up-regulating pro-apoptotic proteins such as Bax, Bad, and Bim. Also, HDACIs demonstrate the ability to inhibit tumor cell angiogenesis. Representing a new category of targeted anti-cancer therapeutics, HDACIs possess the capability to restore the expression of tumor suppressor genes, induce apoptosis, and stimulate cell differentiation. Additionally, they exert anti-cancer effects through diverse pathways both in vivo and in vitro, thereby presenting promising prospects in tumor therapy. This review delves into the involvement of HDACs in cancer pathology and the therapeutic potential of HDACIs as emerging drugs in cancer treatment.


Histone Deacetylase Inhibitors , Neoplasms , Humans , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Histone Deacetylases/metabolism , Apoptosis/drug effects
9.
Daru ; 32(1): 263-278, 2024 Jun.
Article En | MEDLINE | ID: mdl-38683491

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Antineoplastic Agents , Cell Proliferation , Histone Deacetylase Inhibitors , Hydroxamic Acids , Molecular Docking Simulation , Phenanthrolines , Humans , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Dynamics Simulation , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/chemistry , Apoptosis/drug effects
10.
Nat Commun ; 15(1): 3635, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688903

Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors, we utilize a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identify a preponderance differential Cytosine-phosphate-Guanine site hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like histone deacetylase 4 and insulin-like growth factor 1 receptor, are associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric central nervous system tumors.


Central Nervous System Neoplasms , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Child , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Epigenomics/methods , Repressor Proteins/metabolism , Repressor Proteins/genetics , Single-Cell Analysis , Transcription, Genetic , Cytosine/metabolism
11.
Ecotoxicol Environ Saf ; 277: 116358, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38653025

Exposure to nicotine by cigarette smoking have shown strongly defectives on the physiological function of ovaries, which in turn leads to disorders of fertility in women. However, the potential molecular mechanisms remain to be elucidated. In this study, we notably found that nicotine was likely to specifically raise the expression of histone deacetylase 3 (HDAC3) to promote the apoptosis and autophagy of granulosa cells (GCs) and block follicular maturation. Moreover, prostaglandin E2 (PGE2) inhibited the apoptosis of GCs and facilitated follicular maturation, and nicotine appeared to inhibit PGE2 secretion by freezing the expression of cyclooxygenase 1 (COX1), which was the rate-limiting and essential enzyme for PGE2 synthesis. Epigenetically, the nicotine was observed to diminish the histone H3 lysine 9 acetylation (H3K9ac) level and compact the chromatin accessibility in -1776/-1499 bp region of COX1 by evoking the expression of HDAC3, with the deactivated Cas9-HDAC3/sgRNA system. Mechanistically, the COX1 protein was found to pick up and degrade the autophagy related protein beclin 1 (BECN1) to control the autophagy of GCs. These results provided a potential new molecular therapy to recover the damage of female fertility induced by nicotine from cigarette smoking.


Autophagy , Dinoprostone , Granulosa Cells , Nicotine , Female , Autophagy/drug effects , Animals , Nicotine/toxicity , Granulosa Cells/drug effects , Dinoprostone/metabolism , Mice , Histone Deacetylases/metabolism , Ovarian Follicle/drug effects , Apoptosis/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase 1/genetics
12.
Eur J Med Chem ; 271: 116428, 2024 May 05.
Article En | MEDLINE | ID: mdl-38653068

Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.


Benzothiazoles , Histone Deacetylase Inhibitors , Polycystic Kidney, Autosomal Dominant , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Humans , Animals , Mice , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , HeLa Cells , Histone Deacetylases/metabolism
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 512-519, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660860

OBJECTIVE: To explore the effects and mechanisms of chidamide on the osteogenic differentiation of bone marrow mesenchymal stromal cells (MSC) from myelodysplastic syndromes (MDS). METHODS: MSC were isolated and cultured from bone marrow of MDS patients and healthy donors. CCK-8 assay was used to detect the effects of chidamide on the proliferation of MSC. The effects of chidamide on the activity of histone deacetylase (HDAC) in MSC was measured by a fluorescence assay kit and Western blot. Alkaline phosphatase (ALP) activity was detected on day 3 and calcium nodule formation was observed by Alizarin Red staining on day 21 after osteogenic differentiation. The expression of early and late osteogenic genes was detected on day 7 and day 21, respectively. RT-PCR and Western blot were used to detect the effects of chidamide on mRNA and protein expression of RUNX2 which is the key transcription factor during osteogenesis. RESULTS: As the concentration of chidamide increased, the proliferation of MSC was inhibited. However, at a low concentration (1 µmol/L), chidamide had no significant inhibitory effect on MSC proliferation but significantly inhibited HDAC activity. In MSC from both MDS patients and healthy donors, chidamide (1 µmol/L) significantly increased ALP activity, calcium nodule formation, thereby mRNA expression of osteogenic genes, and restored the reduced osteogenic differentiation ability of MDS-MSC compared to normal MSC. Mechanistic studies showed that the osteogenic-promoting effect of chidamide may be related to the upregulation of RUNX2 . CONCLUSION: Chidamide can inhibit HDAC activity in MSC, upregulate the expression of the osteogenic transcription factor RUNX2, and promote the osteogenic differentiation of MDS-MSC.


Aminopyridines , Cell Differentiation , Cell Proliferation , Core Binding Factor Alpha 1 Subunit , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Osteogenesis , Humans , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Cell Differentiation/drug effects , Aminopyridines/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Bone Marrow Cells , Benzamides/pharmacology , Histone Deacetylases/metabolism , Alkaline Phosphatase/metabolism
14.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Article En | MEDLINE | ID: mdl-38593621

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Histone Deacetylases , Tubulin , Tubulin/metabolism , Histone Deacetylases/metabolism , Histone Deacetylase 6/metabolism , Biphenyl Compounds , Hydrazines , Histone Deacetylase Inhibitors/pharmacology , Acetylation
15.
PLoS One ; 19(4): e0302374, 2024.
Article En | MEDLINE | ID: mdl-38635564

While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.


Corticosterone , Histone Deacetylases , Mice , Animals , Histone Deacetylases/metabolism , Corticosterone/metabolism , Learning , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Memory, Long-Term , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/metabolism , Hippocampus/metabolism
16.
Biomolecules ; 14(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38672510

Histone deacetylase (HDAC) 9 is a negative regulator of adipogenic differentiation, which is required for maintenance of healthy adipose tissues. We reported that HDAC9 expression is upregulated in adipose tissues during obesity, in conjunction with impaired adipogenic differentiation, adipocyte hypertrophy, insulin resistance, and hepatic steatosis, all of which were alleviated by global genetic deletion of Hdac9. Here, we developed a novel transgenic (TG) mouse model to test whether overexpression of Hdac9 is sufficient to induce adipocyte hypertrophy, insulin resistance, and hepatic steatosis in the absence of obesity. HDAC9 TG mice gained less body weight than wild-type (WT) mice when fed a standard laboratory diet for up to 40 weeks, which was attributed to reduced fat mass (primarily inguinal adipose tissue). There was no difference in insulin sensitivity or glucose tolerance in 18-week-old WT and HDAC9 TG mice; however, at 40 weeks of age, HDAC9 TG mice exhibited impaired insulin sensitivity and glucose intolerance. Tissue histology demonstrated adipocyte hypertrophy, along with reduced numbers of mature adipocytes and stromovascular cells, in the HDAC9 TG mouse adipose tissue. Moreover, increased lipids were detected in the livers of aging HDAC9 TG mice, as evaluated by oil red O staining. In conclusion, the experimental aging HDAC9 TG mice developed adipocyte hypertrophy, insulin resistance, and hepatic steatosis, independent of obesity. This novel mouse model may be useful in the investigation of the impact of Hdac9 overexpression associated with metabolic and aging-related diseases.


Adipocytes , Aging , Fatty Liver , Histone Deacetylases , Insulin Resistance , Mice, Transgenic , Animals , Insulin Resistance/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Mice , Adipocytes/metabolism , Adipocytes/pathology , Aging/genetics , Aging/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Hypertrophy , Male
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673851

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


HMGB1 Protein , Histone Deacetylases , Hydroxamic Acids , Leukocyte Elastase , Macrophages , Humans , HMGB1 Protein/metabolism , Histone Deacetylases/metabolism , Macrophages/metabolism , Leukocyte Elastase/metabolism , Sirtuin 1/metabolism , Acetylation , Histone Deacetylase Inhibitors/pharmacology , Cells, Cultured , Pulmonary Disease, Chronic Obstructive/metabolism , Cystic Fibrosis/metabolism , Proteolysis , Monocytes/metabolism , Histone Acetyltransferases/metabolism
18.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38649186

Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.


Cell Differentiation , Epidermis , Histone Deacetylases , Keratinocytes , Mi-2 Nucleosome Remodeling and Deacetylase Complex , RNA, Long Noncoding , Repressor Proteins , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Keratinocytes/metabolism , Keratinocytes/cytology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Epidermis/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Early Growth Response Protein 3/genetics , Early Growth Response Protein 3/metabolism , Epigenesis, Genetic , Epidermal Cells/metabolism , Epidermal Cells/cytology , Chromatin/metabolism , Chromatin/genetics , Gene Expression Regulation , Cells, Cultured
19.
Sci Adv ; 10(15): eadk7678, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38598631

The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.


Nucleosomes , Saccharomyces cerevisiae Proteins , Histones/metabolism , Cryoelectron Microscopy , Methylation , Histone Deacetylases/metabolism , DNA/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
ACS Infect Dis ; 10(5): 1520-1535, 2024 May 10.
Article En | MEDLINE | ID: mdl-38669567

The term "zoonosis" denotes diseases transmissible among vertebrate animals and humans. These diseases constitute a significant public health challenge, comprising 61% of human pathogens and causing an estimated 2.7 million deaths annually. Zoonoses not only affect human health but also impact animal welfare and economic stability, particularly in low- and middle-income nations. Leishmaniasis and schistosomiasis are two important neglected tropical diseases with a high prevalence in tropical and subtropical areas, imposing significant burdens on affected regions. Schistosomiasis, particularly rampant in sub-Saharan Africa, lacks alternative treatments to praziquantel, prompting concerns regarding parasite resistance. Similarly, leishmaniasis poses challenges with unsatisfactory treatments, urging the development of novel therapeutic strategies. Effective prevention demands a One Health approach, integrating diverse disciplines to enhance diagnostics and develop safer drugs. Metalloenzymes, involved in parasite biology and critical in different biological pathways, emerged in the last few years as useful drug targets for the treatment of human diseases. Herein we have reviewed recent reports on the discovery of inhibitors of metalloenzymes associated with zoonotic diseases like histone deacetylases (HDACs), carbonic anhydrase (CA), arginase, and heme-dependent enzymes.


Leishmania , Leishmaniasis , Schistosoma , Schistosomiasis , Zoonoses , Animals , Humans , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Schistosoma/drug effects , Schistosoma/enzymology , Zoonoses/drug therapy , Schistosomiasis/drug therapy , Leishmania/drug effects , Leishmania/enzymology , Carbonic Anhydrases/metabolism , Histone Deacetylases/metabolism , Enzyme Inhibitors/pharmacology
...